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Abstract

The use of buckled columns, or pairs of pre-bent columns bonded with a viscoelastic filler, as vibration isolators is

analyzed. They support a horizontal rigid bar at its ends, and harmonic vertical motion is applied at the base of the

isolators. The displacement transmissibility is analyzed for both symmetric and asymmetric bars. In the latter case, the bar

exhibits rotational as well as translational motion. Each column is modeled as an elastica, allowing for large deflections.

Small steady-state vibrations about the equilibrium configuration of the system are analyzed. After formulation of the

governing equations, a shooting method is utilized to obtain numerical solutions in Mathematica. The transmissibility is

plotted as a function of the excitation frequency, and vibration shapes associated with peaks in the transmissibility plots

are shown. For the buckled single-column isolators, the effect of the amount of asymmetry of the bar is examined. For the

bonded two-column pre-bent isolators, the effects of the filler stiffness, amount of initial curvature, and supported weight

are determined. The isolators can be effective for a large range of excitation frequencies.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Winterflood and collegues [1–5] have studied the application of buckled columns, called Euler springs, as
vibration isolators. These devices may be efficient by having relatively low mass and stored energy while
supporting weights statically, and then a large isolation bandwidth due to their vibration characteristics. The
application of interest was low-frequency isolation of the Australian International Gravitational Observatory.

Virgin and Davis [6] conducted experiments with a weight supported by two buckled pinned–pinned
columns. The system was effective when the frequency of the vertical harmonic base excitation was sufficiently
high. Plaut et al. [7] analyzed an isolator consisting of two rigid bars connected with a rotational spring, and
included responses with large isolator motions caused by parametric and external (forcing) terms in the
governing equations. Buckled and pre-bent columns with fixed ends were examined in Plaut et al. [8]. A weight
was supported by a single column, and the deflection transmissibility (i.e., the amplitude of the motion of the
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weight divided by the amplitude of the motion of the base of the column) was computed over a range of
excitation frequencies. The effects of external and internal damping, column stiffness, supported weight, and
initial curvature were investigated. Two-frequency base excitations were also applied.

Finally, Bonello et al. [9] considered the use of curved beams with pinned ends. The beams had a
piezoelectric layer between a steel layer and an aluminum layer. Vertical motion of a mass supported by two of
the isolators was analyzed. The curvatures of the beam could be adjusted during motion of the system to vary
the vertical stiffness and reduce the force transmissibility. Tests were conducted to demonstrate the
effectiveness of the adaptive tuned vibration absorber.

The present analysis extends previous work by considering a horizontal rigid bar supported at its ends by
such isolators, and allowing for rotational as well as vertical motions. The displacement transmissibility is
investigated. Single-column isolators that are slightly buckled by the weight of the bar are treated first. The bar
may be symmetric or asymmetric. Then two-column isolators that are pre-bent and bonded together by a
viscoelastic filler are investigated in the case of a symmetric bar. It is desired to have large ranges of applied
frequency for which the transmissibility is very low.
2. Formulation for single-column isolators

2.1. Variables and parameters

For a single column supporting each end of the rigid bar, the system is depicted in Fig. 1. Each column is
assumed to be an elastica, which is thin, flexible, inextensible, and unshearable [10]. Column j is uniform with
constant bending stiffness ajEIc, constant mass per unit length ajm, and length L. (For cases in which the
columns are not identical, i.e., aj6¼1, it is assumed that their thicknesses are the same and widths are different,
so that the bending stiffness is proportional to the mass per unit length.) The weights of the columns are
neglected. From the base, the arc length is Sj, the axial and transverse coordinates are Xj(S,T) and Yj(S,T),
respectively, and the rotation angle in radians is yj(S,T), where T denotes time. The columns are unstrained
when they are straight. In equilibrium, the fraction of the weight of the rigid bar acting on each column is
Fig. 1. Geometry of rigid bar with single-column isolators.
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slightly higher than the critical load for that column, and the columns are assumed to be buckled outward in
the numerical work. External damping with coefficient C is assumed to act on the columns. The applied
vertical deflection at the base of each column is U0 sinOT, positive if upward, with U040.

The bar is assumed to have a trapezoidal shape, and in equilibrium its bottom edge is horizontal. The bar’s
thickness is 2H�A at the left edge and 2H+A at the right edge, and its weight is 2P0. Its centroid is located at
a distance H above the bottom edge and at distances B1 and B2 from the sides, as shown in Fig. 1, so that, in
terms of the total bar length and the parameters in the side dimensions, B1 ¼ (6H+A)(B1+B2)/(12H) and
B2 ¼ (6H�A)L/(12H). From equilibrium, the vertical deflection of the bar is denoted X(T), the horizontal
deflection is Y(T), and the rotation is f(T), with positive senses shown in Fig. 1. It is assumed that the
horizontal deflection is constrained to be zero in equilibrium, and in the vibration results it turns out to be
very small.

The components of the internal force in column j along the fixed Xj and Yj directions are denoted Pj(S,T)
and Qj(S,T), respectively, and the bending moment is Mj(S,T). Fig. 2 shows a free body diagram of an element
of the column, including inertia and damping forces. The subscript j and coefficient aj are not included, and
the superscript + denotes quantities at arc length S+dS.

2.2. Equations for columns

The two geometrical relationships, the constitutive law, and the three equations of motion for column j are
as follows:

qX j

qSj

¼ cos yj ;
qY j

qSj

¼ sin yj ;
qyj

qSj

¼
Mj

ajEIc

;
qMj

qSj

¼ Qj cos yj � Pj sin yj,

qPj

qSj

¼ �ajm
q2X j

qT2
� C

qX j

qT
;

qQj

qSj

¼ �ajm
q2Y j

qT2
� C

qY j

qT
ðj ¼ 1; 2Þ. ð1Þ

Small motions about equilibrium will be considered. The subscript ‘‘e’’ will denote quantities in the
equilibrium state, and the subscript ‘‘d’’ will denote dynamic quantities. The column variables are written in
the following complex form:

X jðSj ;TÞ ¼ X jeðSjÞ þ X jd ðSjÞ e
iOT ; Y jðSj ;TÞ ¼ Y jeðSjÞ þ Y jd ðSjÞ e

iOT ,

yjðSj ;TÞ ¼ yjeðSjÞ þ yjdðSjÞ e
iOT ; MjðSj ;TÞ ¼MjeðSjÞ þMjdðSjÞ e

iOT ,

PjðSj ;TÞ ¼ Pje þ PjdðSjÞ e
iOT ; QjðSj ;TÞ ¼ Qje þQjd ðSjÞ e

iOT ðj ¼ 1; 2Þ. ð2Þ

The imaginary parts of the dynamic variables will correspond to the response to the excitation.
In equilibrium, the last two of Eqs. (1) imply that the internal force components, Pje and Qje, are constant

along the column. The other equations are

dX je

dSj

¼ cos yje;
dY je

dSj

¼ sin yje;
dyje

dSj

¼
Mje

ajEIc

,

dMje

dSj

¼ Qje cos yje � Pje sin yje ðj ¼ 1; 2Þ. ð3Þ
Fig. 2. Free body diagram of column element, including inertia and external damping forces.
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For small steady-state vibrations about equilibrium, Eqs. (1) and (2) lead to the following governing linear
equations in the dynamic variables:

dX jd

dSj

¼ �yjd sin yje;
dY jd

dSj

¼ yjd cos yje;
dyjd

dSj

¼
Mjd

ajEIc

,

dMjd

dSj

¼ ðQjd � PjeyjdÞ cos yje � ðPjd þQjeyjdÞ sin yje,

dPjd

dSj

¼ ðajmO2 � iOCÞX jd ,

dQjd

dSj

¼ ðajmO2 � iOCÞY jd ðj ¼ 1; 2Þ. ð4Þ

2.3. Equations for rigid bar

The moment of inertia of the rigid bar about its centroid is given by

I ¼
P0

72gH2
½ð12H2 � A2ÞðB1 þ B2Þ

2
þ 48H4 þ 24H2A2 � A4�, (5)

where g denotes gravitational acceleration. A free body diagram of the bar is shown in Fig. 3. The three
equations of motion for the bar are

2P0

g

d2X ðTÞ

dT2
¼ P1ðL;TÞ þ P2ðL;TÞ � 2P0, (6)

2P0

g

d2Y ðTÞ

dT2
¼ Q1ðL;TÞ þQ2ðL;TÞ, (7)

I
d2fðTÞ
dT2

¼ ½P2ðL;TÞB2 � P1ðL;TÞB1 �Q2ðL;TÞH �Q1ðL;TÞH� cos fðTÞ

þ ½P2ðL;TÞH þ P1ðL;TÞH þQ2ðL;TÞB2 �Q1ðL;TÞB1� sin fðTÞ

�M1ðL;TÞ �M2ðL;TÞ. ð8Þ
Fig. 3. Free body diagram of rigid bar, including inertia forces.
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From geometrical considerations,

X 1eðLÞ þH þ X ðTÞ ¼ X 1ðL;TÞ þH cos fðTÞ þ B1 sin fðTÞ

¼ X 2ðL;TÞ þH cos fðTÞ � B2 sin fðTÞ ð9Þ

and

B2 þ Y ðTÞ ¼ Y 2ðL;TÞ þH sin fðTÞ þ B2 cos fðTÞ

¼ B1 þ B2 þ Y 1ðL;TÞ þH sin fðTÞ � B1 cos fðTÞ. ð10Þ

Eqs. (9) and (10) lead to the expressions

sin fðTÞ ¼
X 2ðL;TÞ � X 1ðL;TÞ

B1 þ B2
, (11)

cos fðTÞ ¼
B1 þ B2 þ Y 1ðL;TÞ � Y 2ðL;TÞ

B1 þ B2
(12)

and

X ðTÞ ¼
X 1ðL;TÞB2 þ X 2ðL;TÞB1 þ Y 1ðL;TÞH � Y 2ðL;TÞH � ðB1 þ B2ÞL

B1 þ B2
, (13)

Y ðTÞ ¼
Y 1ðL;TÞB2 þ Y 2ðL;TÞB1 þ X 2ðL;TÞH � X 1ðL;TÞH

B1 þ B2
. (14)

Steady-state motions of the rigid bar about equilibrium are written as

X ðTÞ ¼ X d e
iOT ; Y ðTÞ ¼ Y d e

iOT ; fðTÞ ¼ fd e
iOT . (15)

Linearizing Eq. (11) and using X2e ¼ X1e, the rotational amplitude fd can be written in terms of the column
variables as

fd ¼
X 2dðLÞ � X 1d ðLÞ

B1 þ B2
. (16)

2.4. Boundary conditions and transmissibility

Eqs. (13)–(16) are used with Eqs. (6)–(8) to eliminate X, Y, and f in the boundary conditions at the tops of
the columns. For equilibrium, those boundary conditions at Sj ¼ L are

X 2e ¼ X 1e; Y je ¼ 0; yje ¼ 0; P1e þ P2e ¼ 2P0,

Qje ¼ 0; P2eB2 � P1eB1 ¼M1e þM2e ðj ¼ 1; 2Þ. ð17Þ

For the dynamic variables, the boundary conditions at Sj ¼ L are

Y 2d ¼ Y 1d ; y1d ¼
X 2d � X 1d

B1 þ B2
; y2d ¼ y1d ,

� 2O2P0ðX 1dB2 þ X 2dB1Þ ¼ ðB1 þ B2ÞðP1d þ P2dÞg,

� 2O2P0ðY 1dB2 þ Y 2dB1 þ X 2dH � X 1dHÞ ¼ ðB1 þ B2ÞðQ1d þQ2dÞg,

hskip� 28pt� O2IðX 2d � X 1d Þ ¼ ð2P0H þQ2eB2 �Q1eB1ÞðX 2d � X 1dÞ

hskip� 28pt þ ðB1 þ B2ÞðP2dB2 � P1dB1 �Q2dH �Q1dH �M1d �M2dÞ. ð18Þ

At Sj ¼ 0, Xje ¼ Yje ¼ yje ¼ Yjd ¼ yjd ¼ 0 and Xjd ¼ U0.
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The transmissibility (TR) of interest here is the ratio of the amplitude of the vertical motion of the center of
the bar to the amplitude U0 of the applied vertical base motion. Therefore

TR ¼
1

2U0

X2
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fRe ½X jd ðLÞ�g

2 þ fIm ½X jd ðLÞ�g
2

q
. (19)

This transmissibility is independent of U0.
The calculations are carried out in terms of the nondimensional quantities

bj ¼
Bj

L
; h ¼

H

L
; a ¼

A

L
; xj ¼

X j

L
; yj ¼

Y j

L
; sj ¼

Sj

L
; p0 ¼

P0L
2

EIc

,

pj ¼
PjL

2

EIc

; qj ¼
QjL

2

EIc

; mj ¼
MjL

EIc

; u0 ¼
U0

L
; r ¼

EIc

mgL3
; c ¼

CL2

ffiffiffiffiffiffiffiffiffiffi
mEIc

p ,

t ¼
T

ffiffiffiffiffiffiffi
EIc

p

L2 ffiffiffi
m
p ; o ¼

OL2 ffiffiffi
m
p

ffiffiffiffiffiffiffi
EIc

p ðj ¼ 1; 2Þ. ð20Þ

For equilibrium and then for vibrations, numerical solutions are obtained using a shooting method with the
software Mathematica [11]. In the numerical examples in the following section:

b1 þ b2 ¼ 1; h ¼ 0:1; p0 ¼ 40; r ¼ 1; c ¼ 1; u0 ¼ 0:01. (21)

Therefore the length of the bar is the same as the length of each column, the aspect ratio in the case of a
uniform bar is 0.2, and in equilibrium the axial load in each column is 1.3 percent higher than its critical load.
The quantity r is called the stiffness parameter. As mentioned before, the value specified for u0 does not affect
the results.

3. Results for single-column isolators

The case of a uniform bar is considered first, so that aj ¼ 1, b1 ¼ 0.5, and f ¼ 0. The results are the same as
for the problem treated in Ref. [8] involving a single column supporting a mass. A single column, e.g., j ¼ 1,
can be analyzed. For equilibrium, p1e ¼ p0, q1e ¼ 0, and, at s ¼ 0, x1e ¼ y1e ¼ y1e ¼ 0. Using Eqs. (3) in
nondimensional form, the ‘‘initial condition’’ m1e(0) is varied until y1e(1) ¼ 0 and y1e(1) ¼ 0 with sufficient
accuracy. Using Eqs. (4) in nondimensional form, in the dynamic part of the analysis, x1d(0) ¼ u0, y1d(0) ¼
y1d(0) ¼ 0, and m1d(0), p1d(0) and q1d(0) are varied until y1d(1) ¼ y1d(1) ¼ 0, and p1d(1) ¼ �o

2rp0x1d(1).
The transmissibility curve is shown in Fig. 4, in which TR is plotted as a function of the nondimensional

excitation frequency o for 0.1ooo200 using log scales. The curve for the range 0.1ooo15 was included in
Ref. [8]. The first peak occurs at o ¼ 0.698, and the corresponding steady-state vibration shape is depicted in
Fig. 5(a). The columns exhibit no nodes in this shape, and the dynamic shape is symmetric about midspan.
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Fig. 4. Transmissibility curves for symmetric bar; 0.1ooo200.
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Fig. 5. Steady-state vibration shapes at peak frequencies: (a) o ¼ 0.698, (b) o ¼ 44.73, (c) o ¼ 75.26 and (d) o ¼ 173.6.
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Fig. 6. Transmissibility curves for asymmetric bar; 0.1ooo10: light solid curve, b1 ¼ 0.50; dark solid curve, b1 ¼ 0.55; and dotted curve,

b1 ¼ 0.70.
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There is a small peak in TR at o ¼ 44.73, and the column vibration shapes shown in Fig. 5(b) are anti-
symmetric about equilibrium, with only a node at midspan. For the peak at o ¼ 75.26, the columns vibrate in
a symmetric dynamic shape with no nodes (Fig. 5(c)), so that all points pass through the equilibrium
configuration simultaneously. The shapes corresponding to the peak at o ¼ 173.6 have three nodes and are
anti-symmetric about equilibrium, as seen in Fig. 5(d).

Next, the bar is assumed to be asymmetric with b14b2. For equilibrium, xje, yje, and yje are zero at sj ¼ 0,
pje ¼ ajp0 (with a2 ¼ 2�a1), and qje ¼ 0 (j ¼ 1,2). Using Eq. (3), the quantities mje(0) and a1 are varied until
Eqs. (17) are satisfied in nondimensional form at sj ¼ 1. The cases b1 ¼ 0.55, 0.60, 0.65, and 0.70 are
considered. The corresponding values of a1 are 0.9093, 0.8183, 0.7278, and 0.6370, respectively. For example,
if b1 ¼ 0.55, the bending stiffnesses in the left and right columns in Fig. 1 are 0.9093EIc and 1.0907EIc,
respectively, and the corresponding axial loads in equilibrium are 40(0.9093) ¼ 36.37 and 40(1.0907) ¼ 43.63.

Using Eqs. (4), for the dynamic analysis of the asymmetric bar, xjd(0) ¼ u0, yjd(0) ¼ yjd(0) ¼ 0, and mjd(0),
pjd(0) and qjd(0) are varied until Eqs. (18) are satisfied in nondimensional form. The effect of asymmetry is
illustrated in Fig. 6 for a small range of excitation frequency (0.1ooo10). Transmissibility plots are presented
for b1 ¼ 0.50 (as in Fig. 4), 0.55, and 0.70. The excitation frequency at the first peak does not vary
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Fig. 7. Transmissibility curve for asymmetric bar; b1 ¼ 0.70, 0.1ooo200.

Fig. 8. Steady-state vibration shapes at peak frequencies for b1 ¼ 0.70: (a) o ¼ 0.59, (b) o ¼ 3.79, (c) o ¼ 44.3, (d) o ¼ 75.3, and (e)

o ¼ 173.6.
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monotonically with b1. For b1 ¼ 0.50, 0.55, 0.60, 0.65, and 0.70, respectively, the first peak occurs at
o ¼ 0.698, 0.710, 0.646, 0.646, and 0.593. An additional transmissibility peak is exhibited if the bar is
asymmetric. For b1 ¼ 0.55, 0.60, 0.65, and 0.70, respectively, it occurs at o ¼ 3.277, 3.430, 3.516, and 3.789.

A larger range of frequency, 0.1ooo200, is used in Fig. 7 for the case b1 ¼ 0.70, and the shapes associated
with the transmissibility peaks are plotted in Fig. 8. At o ¼ 0.593, the bar exhibits little rotation, so that the
motion is mostly vertical. At o ¼ 3.789, the bar rotates significantly, with a node near its right end. For the
small peak at o ¼ 44.31 and the peaks at o ¼ 75.28 and 173.6, there is little rotation of the bar, and the
amplitude of motion of the right column is much larger than that of the left column. In Fig. 8(d), with
o ¼ 75.28, the vibration shape of the right column has three local extrema but no nodes, as seen in some other
problems [12,13].
4. Formulation for two-column isolators

Now the system shown in Fig. 9 is considered. Each isolator consists of two pre-bent columns bonded
together with a filler that provides stiffness and damping. The rigid bar is uniform and has weight 4P0. The bar
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Fig. 9. Geometry of rigid bar with two-column isolators.

Fig. 10. Geometry of column drawn horizontally.
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does not rotate during steady-state vibration. The isolators remain vertical, their ends move up and down, and
the two columns in each isolator are mirror images of each other. The horizontal components of the
distributed stiffness and damping forces of the filler on the columns are assumed to dominate, and the vertical
components of the filler’s forces are neglected in the analysis.

For each isolator, a single column will be analyzed, as depicted in Fig. 10 in a horizontal configuration with
distributed springs and dashpots. The column is assumed to be unstrained when the rotation angle y ¼ y0(S) is
given by

y0ðSÞ ¼ d0 sin
2pS

L
. (22)

The corresponding deflection Y0(S) is approximately equal to the first buckling mode of a fixed–fixed
column with amplitude d0L/p. The distributed stiffness is assumed to be linear in the additional deflection
Y�Y0 and to be inversely proportional to Y0, so that the filler is stiffer where it is thinner. The distributed
damping is assumed to be proportional to the transverse velocity qY/qT and to Y0, so that the damping is
greater where the filler is thicker. External damping is neglected in this case.

The governing equations for the column are

qX

qS
¼ cos y;

qY

qS
¼ sin y;

qy
qS
¼

M

EIc

þ
dy0
dS

;
qM

qS
¼ Q cos y� P sin y,

qP

qS
¼ �m

q2X

qT2
;

qQ

qS
¼ �m

q2Y

qT2
� 2Cf Y 0

qY

qT
�

2Kf

Y 0
ðY � Y 0Þ;

dY 0

dS
¼ sin y0, ð23Þ
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where Kf and Cf are constant stiffness and damping coefficients. The time-dependent variables are written in a
form similar to Eq. (2), and the nondimensionalized quantities in Eq. (20) are used, without the subscript j,
along with

y0 ¼
Y 0

L
; kf ¼

2Kf L3

EIc

; cf ¼
2Cf L3

ffiffiffiffiffiffiffiffiffiffi
mEIc

p . (24)

The transmissibility in this case is defined by

TR ¼
1

U0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fRe ½X dðLÞ�g

2 þ fIm ½X dðLÞ�g
2

q
. (25)
5. Results for two-column isolators

The parameters in Eq. (21) are used again, except that c ¼ 1 is replaced by cf ¼ 1, and other values for p0
will be considered in the final figure. In the computer programs, the denominator y0 in the stiffness force is
replaced by y0+10�7 to avoid possible numerical problems near the column ends where y0 ¼ 0. The numerical
procedure is similar to that for the symmetric case of the single-column isolators, with the addition in the
equilibrium analysis of the condition y0(0) ¼ 0, a differential equation involving qe(s), and variation of qe(0) as
well as me(0).

Initial amplitudes d0 of y0 are chosen as 0.01, 0.05, and 0.10, which, respectively, correspond to maximum
(central) values 0.00318, 0.0159, and 0.0318 of the pre-bent deflection y0. In equilibrium, the maximum value
of ye depends on p0, kf, and d0. For example, if p0 ¼ 40, kf ¼ 0.1, and d0 ¼ 0.1, then ye(0.5) ¼ 0.28 [14].

The effect of the filler stiffness on TR is illustrated in Fig. 11, where d0 ¼ 0.05. As kf increases from 0.1 to 1.0
and 10.0, the first peak moves from o ¼ 0.898 to 1.612 and 15.82, and the second peak occurs at o ¼ 44.83,
45.77, and 84.59, respectively. In Fig. 11, the largest range of applied frequency for which TR is small occurs
for the lowest value of filler stiffness considered.

Fig. 12 depicts the influence of the size of the initial curvature of the columns on TR. In this case, kf ¼ 0.1.
The first peak for d0 ¼ 0.01, 0.05, and 0.10, respectively, occurs at o ¼ 2.287, 0.898, and 0.922. The
transmissibility is usually lowest for the middle case d0 ¼ 0.05 in the range 1ooo45.

For the single-column isolators, the weight of the bar was assumed to be high enough to buckle the columns.
The two-column isolators, however, are pre-bent, and small supported weights also can be considered. In Fig. 13,
values p0 ¼ 10, 20, and 30 are considered in addition to p0 ¼ 40. Here kf ¼ 0.1 and d0 ¼ 0.1. The value of o at the
first peak of TR increases as p0 decreases; for p0 ¼ 40, 30, 20, and 10, respectively, it is at o ¼ 0.922, 2.259, 6.488,
and 13.34. The second peak for p0 ¼ 40, 30, and 20, respectively, occurs at o ¼ 44.60, 49.17, and 53.67, but the
case p0 ¼ 10 does not have a noticeable peak in that region. On the right side of Fig. 13, the peaks for these
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Fig. 11. Transmissibility curves for asymmetric bar with d0 ¼ 0.05, 0.1ooo100: dark solid curve, kf ¼ 0.1; light solid curve, kf ¼ 1.0; and

dotted curve, kf ¼ 10.0.
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Fig. 12. Transmissibility curves for asymmetric bar with kf ¼ 0.1, 0.1ooo100: dark solid curve, d0 ¼ 0.1; light solid curve, d0 ¼ 0.05; and

dotted curve, d0 ¼ 0.01.
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Fig. 13. Transmissibility curves for asymmetric bar with kf ¼ 0.1, d0 ¼ 0.1, 0.1ooo100: dark solid curve, p0 ¼ 40; light solid curve,

p0 ¼ 30; dotted curve, p0 ¼ 20; and dash-dot curve, p0 ¼ 10.
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decreasing values of p0 are at o ¼ 78.53, 78.12, 82.98, and 93.45, respectively. The lowest transmissibility in the
frequency range 1ooo100 in Fig. 13 usually occurs for p0 ¼ 40.

6. Concluding remarks

The effectiveness of an isolator for a given system typically depends on the excitation. Simple-harmonic,
vertical base motion was assumed, and a horizontal bar was supported at its ends by buckled columns or pairs
of pre-bent columns bonded together. The bar was constrained against horizontal motion, so its coordinates
were the vertical motion of the center of mass and rotational motion about the center of mass. Each column
was modeled as an inextensible elastica, and a shooting method was applied to obtain numerical solutions.
The transmissibility for the vertical deflection of the center of mass was plotted as a function of the excitation
frequency. Since the columns were treated as continuous structural components, the transmissibility has an
infinite number of peaks, but only a certain low range of frequencies was considered.

The range of frequencies for which the transmissibility is low (e.g., less than 0.1) depends on the system
parameters. For the single-column isolators, asymmetry introduces an additional transmissibility peak
between the first and second peaks for the symmetric case. Since the symmetric case is idealistic, with
imperfections occurring in practice, the results for asymmetric cases should be more meaningful, and these
cases have a reduced range of frequencies for which the transmissibility is low.

The two-column, pre-bent isolators can be used for loads below the buckling load, but are usually less
effective for such cases if the excitation frequency is relatively low. If the curvature of the columns is decreased,
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or if the stiffness of the filler is increased, the range of frequencies for effective isolation tends to move to
higher frequencies.

Part 2 of this investigation presents an analysis of a square, rigid plate with pairs of pre-bent columns
supporting each corner of the plate [15].
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